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Local field effects on magnetic suppression of the converging Richtmyer-Meshkov instability
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Abstract

We examine how the suppression of the converging shock-
driven Richtmyer-Meshkov instability by an applied magnetic
field is dependent on the local magnetic field strength and ori-
entation. In particular, we examine whether the extent of sup-
pression can be reasonably predicted by a linear model for the
planar case. This is done for cylindrically converging cases with
a high perturbation wavenumber and two different initial mag-
netic field configurations.

Introduction

The Richtmyer-Meshkov instability (RMI) of shock-accelerated
density interfaces is highly detrimental to the chance of achiev-
ing a fusion burn in inertial confinement fusion (ICF) experi-
ments [1]. In these experiments, a capsule containing fuel is
imploded by a converging shock wave [2]. Conditions achieved
at the centre of the implosion are sufficient to initiate fusion re-
actions, but a variety of factors including RMI-initiated mixing
between the fuel and capsule material have thus far prevented
a fusion burn from consuming all the fuel [2]. In these experi-
ments, the materials involved are rapidly ionized. The interac-
tion of such plasmas with magnetic fields can be approximated
using ideal magnetohydrodynamics (MHD).

It has been demonstrated that the MHD RMI can be sup-
pressed by the presence of a seed magnetic field in both planar
[3, 4, 5, 6, 7] and converging geometries [8, 9]. In converging
geometries - cylindrical and spherical implosions - the extent
of RMI suppression is observed to be dependent on the local
field orientation and strength, as can be seen in figure 1. This
is due to the suppression mechanism being the transport of vor-
ticity approximately parallel to the field by MHD waves [8]. In
planar (2D, nonconverging) cases, it has been shown that the
interface perturbation growth rate decays in the presence of a
field normal to the interface [4, 5], and oscillates in the pres-
ence of a parallel field [6]. Magnetic fields of intermediate ori-
entations produce a combination of these behaviors [7]. It is
the converging cases, however, that are of current physical in-
terest: axial seed magnetic fields have been applied in spherical
ICF capsule implosion experiments, with demonstrated perfor-
mance improvements [10], while the application of magnetic
fields to cylindrical implosions is directly relevant to the mag-
netized liner inertial fusion (MagLIF) concept [11]. Developing
optimal seed fields to maximize the performance of plasma im-
plosions is complicated by their geometry and strength affecting
the converging shock distortion [12] and strength [13], in addi-
tion to the nonuniform suppression of the RMI. The ability to
rapidly predict the extent of RMI suppression at all interface
locations for any seed field would aid this development.

A linearized model for the planar MHD RMI has been devel-
oped that predicts its behavior for arbitrary field conditions [7].

In this paper, we first derive an expression for the perturba-
tion amplitude history from the model. We then examine how
accurately using local field conditions in this expression pre-
dicts the variation of interface perturbaton behavior seen in the
high wavenumber (k=128), cylindrically converging RMI cases
shown in figure 1.

Planar Model Interface Behavior

In [7], a model for the planar MHD RMI in the presence of
an initial uniform magnetic field B0 = (B0x, B0z) is derived
by solving a linearized, incompressible, impulse driven initial
value problem. The constant densities of the fluids below and
above the interface are ρ1 and ρ2, respectively, the velocity im-
parted by the impulse in the z (interface-normal) direction is V ,
and initial interface perturbation is η0eikx. The model provides
an expression for the velocity perturbations normal to the inter-
face of the form

w′(x,z, t) = ŵ(z, t)eikx, (1)

where the mean interface location is z = 0. Assuming the in-
terface amplitude η(t) remains small (η(t)� 2π/k), to leading
order it is given by

η(t) = η0 +
∫ t

0
ŵ(0,τ)dτ. (2)

Utilizing the expression for ŵ from [7], we now carry out this
integration to obtain
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where
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and this Atwood number is

A =
ρ2−ρ1

ρ1 +ρ2
. (5)

The complex θ and α values in fluid j are given by

θ = σ+ iω, α j = αz j + iαx j, (6)

where
αx j = cA jxk, αz j = cA jzk, (7)

σ =−B0zk
√

ρ1 +
√

ρ2

ρ1 +ρ2
, (8)



Figure 1: Initial (t = 0, top left) and evolved (t = 0.8) density distributions for simulations of the cylindrically converging RMI with
three different initial magnetic fields: zero field (top right); a uniform horizontal field (bottom left, case C1); and a saddle field (bottom
right, case C3). Field lines are shown where relevant. Generated from the simulations documented in [8].
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Here, the Alfvén wave velocity in fluid j is

cA j = (cA jx,cA jy,cA jz)
T =

B0√
ρ j

. (10)

From the above expressions, note that the decay of perturbation
growth, governed by σ, is governed by the normal component
of the magnetic field. Oscillations in the perturbation ampli-
tude, at frequency ω, are most strongly influenced by the field
component parallel to the interface.

Comparison to Local Interface Perturbation Behavior

To assess the accuracy of equation 3 in predicting the local,
early-time perturbation behavior in the converging MHD RMI,
we compare to the cylindrical simulations shown in figure 1,
which are documented in [8]. Cylindrical cases were selected to
simplify the analysis and interpretation. For high perturbation
wavenumbers, the RMI has the opportunity to develop before
the effects of convergence and the subsequent Rayleigh-Taylor
instability (RTI) become dominant [9]. Thus we compare to the
highest wavenumber cases (k = 128) presented in [8]. The ini-
tial magnetic field strength, characterized by β = 2p0/B2

0 = 32,
is such that the interface perturbations still exhibit substantial
growth, but the instability does not become highly nonlinear.
Here, p0 = 1 is the initial nondimensional pressure of the un-
shocked fluids. Two initial magnetic fields are investigated: a
uniform horizontal field, denoted case C1; and a saddle-point
field (see the lower right quadrant of figure 1), denoted case
C3. The nondimensional initial densities in the simulations are
ρ1 = 1 outside the interface and ρ2 = 5 within, resulting in an
Atwood number of A = 2/3. The converging shock that drives

the instability is initialized via a cylindrical Riemann problem
where the fluid outside of radius r = 2 has density 3ρ1 and pres-
sure 12.1p0. This results in a shock Mach number of approxi-
mately 2.2 upon arrival at the initial interface radius r = 1. Fi-
nally, the initial perturbation amplitude is η0 = 2π/25k. This
initial condition is shown in the top left quadrant of figure 1.

Figure 2: Comparison of model and computational interface
amplitude histories where the local magnetic field orientation
is approximately π/6 from the interface normal. These corre-
spond to θ = π/16 for the uniform field (C1) case and θ = π/32
for the saddle field (C3) case.

Comparisons between the computational perturbation ampli-
tude history and the model are made at azimuthal locations at
angle θ to the horizontal in figures 2-5. For case C1, θ values of
π/16, 3π/16, 5π/16 and 7π/16 are investigated. At these az-



imuthal locations, the local field ranges from near perpendicular
to near parallel to the interface. To study locations with similar
local field angle in case C3, the C1 θ values are halved. As is
conventional, post-shock values of parameters are used in the
model [5].

Figure 2 shows perturbation behavior at locations where the lo-
cal magnetic field is at an angle of approximately π/6 to the
interface normal. Here, the model predicts a rapid decay of the
initial growth rate combined with a long period, low amplitude
oscillation. Prior to t = 0.75, the perturbation behavior in the
converging simulations agrees remarkably well given the many
potential sources of error: in addition to the planar model not ac-
counting for the effects of compressibility, nonlinearity and flow
convergence, it also assumes periodicity. This implies that the
vorticity being transported from adjacent perturbations is iden-
tical to that for the one under consideration. In the cylindrical
simulations, the magnetic field, and hence the vorticity trans-
port, vary continuously around the interface. After t = 0.75, the
Rayleigh-Taylor instability of the interface becomes dominant,
driving down the perturbation amplitude as it begins to effect a
phase inversion. This occurs after the growth of the RMI has
saturated, leading to a convenient separation between the ef-
fects of the two instabilities. We note that the model accurately
predicts both the level and timing of RMI growth saturation.

Figure 3: Comparison of model and computational interface
amplitude histories where the local magnetic field is at an inter-
mediate angle to the interface. These correspond to θ = 3π/16
for the uniform field (C1) case and θ = 3π/32 for the saddle
field (C3) case.

Figure 3 compares the perturbation behavior at locations where
the parallel component of the field has approximately double
the magnitude of the normal component. Here, the model pre-
dicts the same rapid decay of the initial growth, followed by a
higher-amplitude oscillation that is rapidly damped. The model
successfully predicts the approximate magnitude and timing of
the initial peak in the simulated perturbation amplitudes, but
significantly overpredicts the amplitude of the oscillation, and
hence underpredicts the perturbation amplitude at the end of the
RMI dominated phase. The RTI again becomes dominant after
t = 0.75.

Figure 4 illustrates the perturbation amplitude histories at lo-
cations where the parallel component of the field is signifi-
cantly larger (approximately 4.5 times) than the normal com-
ponent. After the brief initial growth phase, the model predicts
a damped oscillation of the perturbation amplitude. The model
has returned to being in good agreement with the behavior seen
in the converging simulations, with both the initial peak in am-

Figure 4: Comparison of model and computational interface
amplitude histories where the local magnetic field is at an inter-
mediate angle to the interface. These correspond to θ = 5π/16
for the uniform field (C1) case and θ = 5π/32 for the saddle
field (C3) case.

plitude, the oscillation frequency and the rate of damping being
reasonably well predicted. Owing to the slow damping of oscil-
lations, there is no longer a clear separation between the RMI
and RTI dominated phases.

Figure 5: Comparison of model and computational interface
amplitude histories where the local magnetic field is near par-
allel to the interface. These correspond to θ = 7π/16 for the
uniform field (C1) case and θ = 7π/32 for the saddle field (C3)
case.

Finally, perturbation behavior when the local field is near par-
allel to the interface is shown in figure 5. Note that we have
actually plotted the magnitude of the perturbation amplitude, so
slope discontinuities occur when the phase of the perturbations
inverts. At this location, the model predicts a slowly damped
oscillation of the perturbation amplitude. The model predicts
both the peak amplitude and oscillation frequency seen in the
cylindrical simulations reasonably well. The damping rate of
the oscillations, however, is substantially greater in the simula-
tions. As in the previous case, the oscillations triggered by the
RMI have not subsided by the time of RTI onset, leading to the
effects of the instabilities merging together at late times.

It is important to note that although the oscillations triggered by
the RMI persist for longer as the angle between the magnetic
field and the interface decreases, the extent of RMI suppres-
sion increases: both the peak and mean perturbation amplitude



decrease as the field becomes parallel to the interface. From
figures 2-5, it is clear that the accuracy of model predictions is
sensitive to the local magnetic field. Inaccuracies due to the ef-
fects of nonlinearity, compressibility and flow convergence are
present at all locations. This suggests that the least accurate pre-
dictions (at θ = 3π/16 for case C1 and θ = 3π/32 for case C3)
occur where the effects of non-periodic vorticity transport are
strongest. In figure 1, it can be observed that the field line cur-
vature at the interface is greatest close to these locations, which
would enhance the non-uniformity of vorticity transport.

Conclusions

An expression for the interface perturbation amplitude history
in the planar MHD RMI has been derived from an existing
linear, incompressible model. The capability of this model to
predict the perturbation behavior in cylindrical shock-driven
MHD RMI simulations was examined for a high perturbation
wavenumber and two different magnetic field configurations. It
was determined that the model provided reasonable estimates of
the peak perturbation amplitude and the time this occurs at all
locations investigated. The accuracy of predictions of perturba-
tion behavior following the initial peak was found to dependent
on the local magnetic field. Physically, it was seen that per-
turbation growth due to the RMI becomes more strongly sup-
pressed as the magnetic field orientation approaches that of the
interface. Around the majority of the interface, there is suffi-
cient time for the RMI to saturate prior to the onset of the RTI
dominated phase of the evolution.
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